HALL TICKET NUMBER



## Mathematical Foundation of Computer Science

(Common to IT, AIML Branches)

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u> Answer all the questions in Part-A (5X2=10M)

| Q.No. |    | Questions                                    | Marks | CO | KL |
|-------|----|----------------------------------------------|-------|----|----|
| 1     | a) | List all implications in statement calculus. | [2M]  | 1  |    |
|       | b) | Define compatibility relation?               | [2M]  | 2  |    |
|       | c) | Compute $8_{p_5}$ and $6_{p_3}$ .            | [2M]  | 3  |    |
|       | d) | Write about partial fraction decomposition.  | [2M]  | 4  |    |
|       | e) | What are bipartite graphs?                   | [2M]  | 5  |    |

PART-B

## Answer One Question from each UNIT (5X10=50M)

| 0.1 | No. | Questions                                                                                                                                                                                                         | Marks | CO | KL |
|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|----|
|     |     | UNIT-I                                                                                                                                                                                                            |       |    |    |
| 2.  | a)  | Assume x is a particular real number. Determine whether the following two statements are logically equivalent. (i) $x < 2$ or it is not the case that $1 < x < 3$ (ii) $x \le 1$ or either $x < 2$ or $x \ge 3$ . | [5M]  | 1  |    |
|     | b)  | Prove that the following argument is valid: No engineers are fools. No one who is not a fool is an administrator. Kumar is an engineer. Therefore Kumar is not an administrator.                                  | [5M]  | 1  |    |
| 2   |     | OR                                                                                                                                                                                                                | [[]]  | 1  | 1  |
| 3.  | a)  | Find the truth table for the propositional formula: $(p \leftrightarrow q) \leftrightarrow (q \rightarrow p)$ .                                                                                                   | [5M]  | 1  |    |
|     | b)  | Explain pcnf and find pcnf of the formula ( $\neg P \rightarrow R$ ) $\Lambda$ ( $Q \leftrightarrow P$ ).                                                                                                         | [5M]  | 1  |    |
|     | 1   | UNIT-II                                                                                                                                                                                                           |       | 1  | 1  |
| 4.  | a)  | Let $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$ and $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$ find (f o g) and (g o f).                                           | [5M]  | 2  |    |
|     | b)  | Let $X = \{1,2,3,4\}$ be a set and R is a relation on the set X such that R<br>= $\{(1,1),(1,4),(4,1),(4,4),(2,2),(2,3),(3,2),(3,3)\}$ .Draw its matrix and graph. Also prove that R is an equivalence relation.  | [5M]  | 2  |    |
|     |     | OR                                                                                                                                                                                                                |       |    |    |
| 5.  | a)  | Let A= $\{1, 2, 3, 4\}$ and f and g be functions from A to A given by<br>f= $\{(1,4), (2,1), (3,2), (4,3)\}$ and g= $\{(1,2), (2,3), (3,4), (4,1)$ prove that<br>f and g are inverse of each other.               | [5M]  | 2  |    |
|     | b)  | Explain in brief about Inversive and Recursive functions with examples.                                                                                                                                           | [5M]  | 2  |    |
|     | 1   | UNIT-III                                                                                                                                                                                                          | 1     | 1  | 1  |
| 6.  | a)  | Find the coefficient of $x^9 y^3$ in the expansion of $(2x - 3y)^{12}$ .                                                                                                                                          | [5M]  | 3  |    |
|     | b)  | In any group (G,*), by proving the inverse of every element is unique.                                                                                                                                            | [5M]  | 3  |    |
|     | 1   | OR                                                                                                                                                                                                                | I     | 1  | 1  |
|     |     |                                                                                                                                                                                                                   |       |    |    |

|     |    |                                                                                                                                                                                          | C     |   |  |
|-----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|--|
| 7.  | a) | Find the number of permutations of the EVERGREEN word?                                                                                                                                   | [5M]  | 3 |  |
|     | b) | Let $G=\{-1,0,1\}$ . Verify that G forms an abelian group under addition?                                                                                                                | [5M]  | 3 |  |
|     | 1  | UNIT-IV                                                                                                                                                                                  | 1     |   |  |
| 8.  |    | Suppose a continuous random variable x has the probability of has the probability density function is $f(x) = k(1-x^2)$ for $0 \le x \le 1$ then find (i) k (ii) Mean and (iii) variance | [10M] | 4 |  |
|     |    | OR                                                                                                                                                                                       |       |   |  |
| 9.  | a) | Solve the recurrence relation $a_n - 6 a_{n-1} + 9 a_{n-2} = 0$ for $n \ge 2$ given $a_0 = 5$ , $a_1 = 12$ .                                                                             | [5M]  | 4 |  |
|     | b) | Solve the recurrence relation $a_{n+2}$ -4 $a_n$ =9 $n^2$ .                                                                                                                              | [5M]  | 4 |  |
|     |    | UNIT-V                                                                                                                                                                                   | 1     |   |  |
| 10. | a) | Define Eulerian circuit and Hamiltonian circuit, give an example of graph that has neither Eulerian circuit nor Hamiltonian circuit.                                                     | [5M]  | 5 |  |
|     | b) | Explain isomorphism of two graphs with suitable example.                                                                                                                                 | [5M]  | 5 |  |
|     |    | OR                                                                                                                                                                                       |       |   |  |
| 11. | a) | Explain Kruskal's algorithm to find minimal spanning tree of the graph with suitable example. Find minimal spanning tree for the given graph.                                            | [5M]  | 5 |  |
|     | b) | Explain about DFS and write the algorithm of DFS with example.                                                                                                                           | [5M]  | 5 |  |
| -   |    | ·<br>•<br>• • • • • • •                                                                                                                                                                  |       |   |  |

R18

\*\*\*\*\*