PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023
Mathematical Foundation of Computer Science
(Common to IT, AIML Branches)
Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO
1	a)	KL		
	b)	Define compatibility relation?	$[2 \mathrm{M}]$	1
	c)	Compute $8_{p_{5}}$ and $6_{p_{3}}$.	$[2 \mathrm{M}]$	2
	d)	Write about partial fraction decomposition.	$[2 \mathrm{M}]$	3
	e)	What are bipartite graphs?	$[2 \mathrm{M}]$	4

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.	a)	Assume x is a particular real number. Determine whether the following two statements are logically equivalent. (i) $x<2$ or it is not the case that $1<x<3$ (ii) $x \leq 1$ or either $x<2$ or $x \geq 3$.	[5M]	1	
	b)	Prove that the following argument is valid: No engineers are fools. No one who is not a fool is an administrator. Kumar is an engineer. Therefore Kumar is not an administrator.	[5M]	1	
OR					
3.	a)	Find the truth table for the propositional formula: $(\mathrm{p} \leftrightarrow \mathrm{q}) \leftrightarrow(\mathrm{q} \rightarrow \mathrm{p})$.	[5M]	1	
	b)	Explain penf and find penf of the formula ($\neg \mathrm{P} \rightarrow \mathrm{R}) \Lambda(\mathrm{Q} \leftrightarrow \mathrm{P})$.	[5M]	1	
UNIT-II					
4.	a)	Let $\mathrm{f}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{array}\right)$ and $\mathrm{g}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3\end{array}\right)$ find (f o g) and (g of).	[5M]	2	
	b)	Let $\mathrm{X}=\{1,2,3,4\}$ be a set and R is a relation on the set X such that R $=\{(1,1),(1,4),(4,1),(4,4),(2,2),(2,3),(3,2),(3,3)\}$.Draw its matrix and graph. Also prove that R is an equivalence relation.	[5M]	2	
OR					
5.	a)	Let $\mathrm{A}=\{1,2,3,4\}$ and f and g be functions from A to A given by $\mathrm{f}=\{(1,4),(2,1),(3,2),(4,3)\}$ and $\mathrm{g}=\{(1,2),(2,3),(3,4),(4,1)$ prove that f and g are inverse of each other.	[5M]	2	
	b)	Explain in brief about Inversive and Recursive functions with examples.	[5M]	2	
UNIT-III					
6.	a)	Find the coefficient of $\mathrm{x}^{9} \mathrm{y}^{3}$ in the expansion of (2x-3y) ${ }^{12}$.	[5M]	3	
	b)	In any group (G,*), by proving the inverse of every element is unique.	[5M]	3	
		OR			

7.	a)	Find the number of permutations of the EVERGREEN word?	[5M]	3	
	b)	Let $\mathrm{G}=\{-1,0,1\}$. Verify that G forms an abelian group under addition?	[5M]	3	
UNIT-IV					
8.		Suppose a continuous random variable x has the probability of has the probability density function is $f(x)=k\left(1-x^{2}\right)$ for $0<x<1$ then find (i) k (ii) Mean and (iii) variance	[10M]	4	
OR					
9.	a)	Solve the recurrence relation $a_{n}-6 a_{n-1}+9 a_{n-2}=0$ for $\mathrm{n}>=2$ given $\mathrm{a}_{0}=$ $5, a_{1}=12$.	[5M]	4	
	b)	Solve the recurrence relation $a_{n+2}-4 a_{n}=9 n^{2}$.	[5M]	4	
UNIT-V					
10.	a)	Define Eulerian circuit and Hamiltonian circuit, give an example of graph that has neither Eulerian circuit nor Hamiltonian circuit.	[5M]	5	
	b)	Explain isomorphism of two graphs with suitable example.	[5M]	5	
OR					
11.	a)	Explain Kruskal's algorithm to find minimal spanning tree of the graph with suitable example. Find minimal spanning tree for the given graph.	[5M]	5	
	b)	Explain about DFS and write the algorithm of DFS with example.	[5M]	5	

